Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
J Biomol Struct Dyn ; : 1-12, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38407814

RESUMEN

The current trend in biomedical research is on prioritizing infections based on multidrug resistance. Elizabethkingia meningoseptica, a nosocomial infection-causing organism emerging from Neonatal Intensive Care Units (NICUs), leads to neonatal meningitis and sepsis resulting in severe illness, and, in some cases, fatal. Finding a solution remains challenging due to limited prior work. Translational S12 ribosomal proteins play a crucial role in decoding the codon-anticodon helix, which is essential for the survival of E. meningoseptica. These proteins do not exhibit significant similarity with humans, making them potential drug targets. An in silico study aims to identify specific inhibitors for E. meningoseptica ribosomal proteins among known bioactive compounds targeting prokaryotic 30S ribosomal protein. A 3D model of the 7JIL_h protein from Flavobacterium johnsoniae, showing 90% sequence similarity with the target protein was generated using SWISS-MODEL software. The model was validated through Molprobity v4.4, VERIFY 3D, Errata, and ProSA analysis, confirming conserved residues of the target protein. Insilico screening of known bioactive compounds and their analogs identified potential ligands for the target protein. Molecular Docking and post-docking analysis assessed the stability of the protein-ligand complexes among the shortlisted compounds. The top two compounds with high Gold fitness scores and low predicted binding energy underwent MD simulation and further estimation of free binding energy using the MM_PBSA module. These computationally shortlisted compounds, namely chEMBL 1323619 and chEMBL 312490 may be considered for future in-vivo studies as potential inhibitors against the modeled 30S ribosomal protein S12 of E. meningoseptica.Communicated by Ramaswamy H. Sarma.

2.
BMC Res Notes ; 15(1): 133, 2022 Apr 09.
Artículo en Inglés | MEDLINE | ID: mdl-35397563

RESUMEN

OBJECTIVE: Elizabethkingia meningoseptica is a multidrug resistance strain which primarily causes meningitis in neonates and immunocompromised patients. Being a nosocomial infection causing agent, less information is available in literature, specifically, about its genomic makeup and associated features. An attempt is made to study them through bioinformatics tools with respect to compositions, embedded periodicities, open reading frames, origin of replication, phylogeny, orthologous gene clusters analysis and pathways. RESULTS: Complete DNA and protein sequence pertaining to E. meningoseptica were thoroughly analyzed as part of the study. E. meningoseptica G4076 genome showed 7593 ORFs it is GC rich. Fourier based analysis showed the presence of typical three base periodicity at the genome level. Putative origin of replication has been identified. Phylogenetically, E. meningoseptica is relatively closer to E. anophelis compared to other Elizabethkingia species. A total of 2606 COGs were shared by all five Elizabethkingia species. Out of 3391 annotated proteins, we could identify 18 unique ones involved in metabolic pathway of E. meningoseptica and this can be an initiation point for drug designing and development. Our study is novel in the aspect in characterizing and analyzing the whole genome data of E. meningoseptica.


Asunto(s)
Infecciones por Flavobacteriaceae , Flavobacteriaceae , Antibacterianos , Flavobacteriaceae/genética , Infecciones por Flavobacteriaceae/genética , Genoma Bacteriano/genética , Genómica , Humanos , Recién Nacido , Datos de Secuencia Molecular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA